Широкое применение осевых турбин в турбореактивных двигателях обусловлено, прежде всего, их высокой энергоемкостью и экономичностью. Именно эти преимущества осевых турбин наряду со сравнительной простотой и надежностью определили их доминирующее положение.
Современное состояние теории и практики проектирования осевых турбин обеспечивает возможность надежного определения параметров турбины на расчетном режиме с достоверным учетом всех видов потерь механической энергии в ее проточной части. При этом газодинамический расчет турбины усложняется, что приводит к значительному увеличению объема вычислений.
Одним из основных средств повышения мощности турбореактивного двигателя является повышение температуры газа перед турбиной Т*Г. но повышение Т*Г значительно влияет на ресурс и надежность турбины. Поэтому исходя из соображений ресурса, при высоких Т*Г необходимо применение новых более жаропрочных материалов, а также прогрессивных способов охлаждения лопаток и дисков турбины.
Обычно газодинамический расчет многоступенчатых турбин выполняют при заданной форме проточной части, поскольку основные исходные данные для расчета турбины получают в результате термогазодинамического расчета двигателя и согласования параметров компрессора и турбины, то к началу расчета проточная часть двигателя, а, следовательно, и его турбины известны.
Вначале расчет проводят для турбины с неохлаждаемыми ступенями, для определения температуры лопаток. Затем определяется эффективный метод охлаждения нуждающихся в охлаждении лопаток и количество, и температуру воздуха, забираемого за компрессором для охлаждения.
По результатам, полученным на предыдущих этапах проектирования, в масштабе вычерчиваем проточную часть турбины. Схема проточной части представлена на рис. 5.1.
Рассчитаем расход газа на входе в турбину и мощность каждого каскада:
=
=11780,15 кВт;
=
=7853,43 кВт;
=
=11684,24 кВт;
кг/с
Исходные данные для газодинамического расчета неохлаждаемой турбины приведены в таблице 5.1.
Таблица 5.1
|
GГ |
37,562 кг/с |
Т*Г |
1550 К |
Р*Г |
1913000 Па |
|
nТВД |
14689 |
nТНД |
10898,1 |
nТВ |
6660,0 |
|
NТВД |
11780,15кВт |
NТНД |
7853,43кВт |
NТВ |
11684,24кВт |
Газодинамический расчет ступени турбины высокого давления
Принимаем:
D1cp=0,5775 мм, D2cp=0,5955 мм, h1=0,044 мм, h2=0,052 мм, kГ=1,31,
RГ=290 Дж/кг·К, СрГ=1238 Дж/кг·К, m=0,0396 (Дж/кг·К)-0,5, α2=68,2˚,
φ=0,946, ρТ=0,36, δРК=0,975, η*СТ=0,915.
Определение работы ступени турбины и проверка величины коэффициента нагрузки:
Дж/кг;
м/с;
Актуально о транспорте
Температурные режимы перевозки грузов
Выписка из приложений 2 и 3 к "Соглашению о международных перевозках скоропортящихся пищевых продуктов и о специальных транспортных средствах, предназначенных для этих перевозок". Мороженое - 20°C Замороженные или быстро (глубоко) замороженные рыба, рыбные продукты, моллюски, ракообразные ...
Расчет мощности привода базовой машины
Мощность привода базовой машины определяется по формуле N, к Вт: , (12) где ν – скорость движения машины, км/ч; η = (0,8 ÷0,9) – механический КПД машины, принимаем равным = 0,9. Расчет производительности бульдозера Производительность бульдозера при резании и перемещении грунта, опр ...
Анализ конструкции тележки типа 18-100
Тележка модели 18-100 является основным типом тележек грузовых вагонов. Рисунок 2.1-тележка модели 18-100 Тележка (рис.2.1) состоит из двух колесных пар 1, двух литых боковых рам 2, четырех клиновых гасителей колебаний 3,четырех буксовых узлов с роликовыми подшипниками 4, шкворня 5, надрессорной ба ...