Газодинамический расчет турбины

Страница 1

Широкое применение осевых турбин в турбореактивных двигателях обусловлено, прежде всего, их высокой энергоемкостью и экономичностью. Именно эти преимущества осевых турбин наряду со сравнительной простотой и надежностью определили их доминирующее положение.

Современное состояние теории и практики проектирования осевых турбин обеспечивает возможность надежного определения параметров турбины на расчетном режиме с достоверным учетом всех видов потерь механической энергии в ее проточной части. При этом газодинамический расчет турбины усложняется, что приводит к значительному увеличению объема вычислений.

Одним из основных средств повышения мощности турбореактивного двигателя является повышение температуры газа перед турбиной Т*Г. но повышение Т*Г значительно влияет на ресурс и надежность турбины. Поэтому исходя из соображений ресурса, при высоких Т*Г необходимо применение новых более жаропрочных материалов, а также прогрессивных способов охлаждения лопаток и дисков турбины.

Обычно газодинамический расчет многоступенчатых турбин выполняют при заданной форме проточной части, поскольку основные исходные данные для расчета турбины получают в результате термогазодинамического расчета двигателя и согласования параметров компрессора и турбины, то к началу расчета проточная часть двигателя, а, следовательно, и его турбины известны.

Вначале расчет проводят для турбины с неохлаждаемыми ступенями, для определения температуры лопаток. Затем определяется эффективный метод охлаждения нуждающихся в охлаждении лопаток и количество, и температуру воздуха, забираемого за компрессором для охлаждения.

По результатам, полученным на предыдущих этапах проектирования, в масштабе вычерчиваем проточную часть турбины. Схема проточной части представлена на рис. 5.1.

Рассчитаем расход газа на входе в турбину и мощность каждого каскада:

==11780,15 кВт;

==7853,43 кВт;

==11684,24 кВт;

кг/с

Исходные данные для газодинамического расчета неохлаждаемой турбины приведены в таблице 5.1.

Таблица 5.1

37,562 кг/с

Т*Г

1550 К

Р*Г

1913000 Па

nТВД

14689

nТНД

10898,1

nТВ

6660,0

NТВД

11780,15кВт

NТНД

7853,43кВт

NТВ

11684,24кВт

Газодинамический расчет ступени турбины высокого давления

Принимаем:

D1cp=0,5775 мм, D2cp=0,5955 мм, h1=0,044 мм, h2=0,052 мм, kГ=1,31,

RГ=290 Дж/кг·К, СрГ=1238 Дж/кг·К, m=0,0396 (Дж/кг·К)-0,5, α2=68,2˚,

φ=0,946, ρТ=0,36, δРК=0,975, η*СТ=0,915.

Определение работы ступени турбины и проверка величины коэффициента нагрузки:

Дж/кг;

м/с;

Страницы: 1 2 3 4 5 6

Актуально о транспорте

Постоянные затраты
Постоянные затраты сводятся к оплате услуг GSM оператора тарифный план телематика (специальный тарифный план для передачи данных между устройствами при помощи GPRS) Абонентская плата за пакеты GPRS-Интернет трафика, в мес. 235 руб. за 90 Мб. Оплата безлимитного тарифа интернет 1000 руб. заработная ...

Определение напряжения кручения и угла закручивания карданного вала
Максимальное напряжение кручения вала, как отмечалось ранее, определяется для случая приложения максимального момента двигателя и при действии динамических нагрузок. Действие динамических нагрузок учитывается коэффициентом динамичности: KД = 1…3. В расчете принимаем KД = 1. Вал карданной передачи а ...

Сравнение двух вариантов участковых станций
Недостатками продольных схем станции при сравнении с полупродольными являются: более длинная станционная площадка, большая стоимость строительства, а также содержания станции. В случаях, где эти условия не могут быть выполнены, принимается станция полупродольного типа. На узловых станциях полупродо ...

Разделы

Copyright © 2020 - All Rights Reserved - www.transfeature.ru